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Randomizing Human Brain Function
Representation for Brain Disease Diagnosis

Mengjun Liu, Huifeng Zhang, Mianxin Liu, Dongdong Chen, Zixu Zhuang, Xin Wang, Lichi Zhang, Daihui
Peng, and Qian Wang

Abstract— Resting-state fMRI (rs-fMRI) is an effective
tool for quantifying functional connectivity (FC), which
plays a crucial role in exploring various brain diseases.
Due to the high dimensionality of fMRI data, FC is typically
computed based on the region of interest (ROI), whose
parcellation relies on a pre-defined atlas. However, utiliz-
ing the brain atlas poses several challenges including (1)
subjective selection bias in choosing from various brain at-
lases, (2) parcellation of each subject’s brain with the same
atlas yet disregarding individual specificity; (3) lack of inter-
action between brain region parcellation and downstream
ROI-based FC analysis. To address these limitations, we
propose a novel randomizing strategy for generating brain
function representation to facilitate neural disease diagno-
sis. Specifically, we randomly sample brain patches, thus
avoiding ROI parcellations of the brain atlas. Then, we intro-
duce a new brain function representation framework for the
sampled patches. Each patch has its function description
by referring to anchor patches, as well as the position
description. Furthermore, we design an adaptive-selection-
assisted Transformer network to optimize and integrate the
function representations of all sampled patches within each
brain for neural disease diagnosis. To validate our frame-
work, we conduct extensive evaluations on three datasets,
and the experimental results establish the effectiveness
and generality of our proposed method, offering a promis-
ing avenue for advancing neural disease diagnosis beyond
the confines of traditional atlas-based methods. Our code
is available at https://github.com/mjliu2020/RandomFR.

Index Terms— Randomizing, function representation,
adaptive selection module, Transformer, brain disease di-
agnosis.

. INTRODUCTION

RAIN disorders, such as autism spectrum disease (ASD),
depressive disorders, and mild cognitive impairment
(MCI), are increasingly prevalent [1]. The impact of ASD,
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depressive disorders, and MCI extends beyond the affected in-
dividuals, imposing significant burdens on families and society
at large [2], [3]. While our understanding of the physiological
and pathological mechanisms underlying these brain disorders
remains incomplete, researches have associated brain diseases
with alterations in brain functions [4]. Consequently, it is
desired to establish a framework to represent brain functions
for the diagnosis of brain disorders.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has emerged as a great tool for investigating brain
functions, owing to its noninvasive nature and high spatial
resolution [5]. Specifically, rs-fMRI enables the detection of
blood-oxygen-level-dependent (BOLD) signals in the resting
state, which serve as proxies for neural and metabolic ac-
tivity [6]. The statistical dependency among BOLD signals
across distinct brain regions serves as a quantitative measure
of functional connectivity (FC), thereby providing a means of
assessing and understanding brain functions [7]. Moreover, it
has been extensively demonstrated that alterations in FC are
closely associated with a myriad of brain disorders [8].

Currently, it is common to perform region-of-interest (ROI)
based FC analysis upon fMRI [9], [10]. In brief, one can utilize
an atlas and parcellate a subject brain into multiple ROIs, i.e.,
by registering the atlas with the subject. Subsequently, the FC
network per subject is modeled by a graph, where each node
indicates a certain ROI and the edge corresponds to FC. By
examining the statistical characteristics of the networks, subtle
distinctions among populations can be discerned [11]. Further-
more, the integration of sophisticated deep-learning techniques
offers the chance to achieve subject-level classification for
disease diagnosis [12].

The aforementioned paradigm heavily relies on the utiliza-
tion of the atlas. It is expected that high-quality ROI parcel-
lation is available when constructing the atlas. In addition,
precise registration of the atlas with each subject (and thus
parcellation) should be guaranteed. However, it gives rise to
three non-trivial issues that warrant careful consideration.

1) The selection of an appropriate atlas for ROI parcella-
tion presents a notable challenge [13], [14]. Extensive
efforts have been dedicated to the construction of high-
quality brain atlases with a particular emphasis on ROI
parcellation, including Automated Anatomical Labeling
(AAL) [15], Schaefer [16], Harvard Oxford (HO) [17],
etc. However, the utilization of different atlases can
introduce variations in the number, size, and spatial
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locations of brain regions, consequently resulting in
considerable inconsistencies in computational experi-
ments [18].

2) The application of a common atlas for parcellating
diverse brains inadvertently neglects individual speci-
ficity [19]. Empirically, different subjects may exhibit
distinct functional parcellations, resulting in variations
in the boundaries of brain regions [20]. The distinctive
functional architecture of each individual’s brain as-
sumes particular importance, especially in personalized
medicine [21].

3) The atlas construction and FC-based classification are
two separate steps, which inherently restrict diagnostic
performance due to the absence of effective communi-
cation between them. Typically, a pre-defined atlas is an
image of either a single healthy subject or an average,
lacking in incorporating population-specific variations
observed in diagnosing diseased brains. Moreover, the
absence of a unified optimization objective in training
for both the parcellation of brain regions and the ROI-
based FC analysis further impedes disease diagnosis.

Numerous studies have recognized and endeavored to ad-
dress the aforementioned limitations. For instance, multi-atlas
approaches have emerged to amalgamate the image features
derived from multiple atlases, thus enhancing brain disease
diagnosis [12]. Moreover, the proposition of individual atlases
has been put forward to facilitate personalized brain disease
diagnosis [21], [22]. Additionally, investigations into data-
driven brain atlases have been conducted to advance brain dis-
ease diagnosis [23]. Despite these endeavors have boosted the
diagnostic performance by partially mitigating the limitations
associated with atlas-based FC, the challenges at hand have
not yet been entirely resolved.

Hence, in this paper, we introduce an innovative strategy
to represent all spatial locations in an fMRI and then sample
the FC network, to generate brain function representation for
neural disease diagnosis. Our proposed approach opens up
promising directions as it significantly diverges from tradi-
tional atlas-based methods.

1) We propose to sample the brain FC network. That is, we
randomly sample a set of patches from each brain. Each
patch is signified by not only the BOLD signals inside
the patch of rs-fMRI, but also the center position of the
patch. By adjusting the patch size and number, we can
acquire a set of patches that covers the entire brain and
delivers a comprehensive representation of the brain. As
the patches are randomly sampled, the above strategy
avoids using the ROI parcellation of a brain atlas, and
also alleviates concerns about registering atlas with the
subject precisely.

2) We construct the representation of these randomly sam-
pled patches through joint function description and po-
sition description. Specifically, we designate a set of
anchor patches as reference to construct the function
description. Furthermore, the position coordinate of each
sampled patch is important and can be properly trans-
formed into the position description. By combining the

two descriptions, we design a holistic representation for
each sampled patch.

3) We design a Transformer network to integrate the
randomly sampled patches for the diagnosis of brain
diseases. We further introduce an adaptive selection
strategy to identify the patches exhibiting robust dis-
criminative capabilities. The Transformer network can
thus effectively model the sampled patches into a global
representation of the brain, while reducing the computa-
tional cost of attention in the Transformer network and
enabling interpretability exploration.

We conduct systematic experiments on three datasets, and
demonstrate superior performance over competing methods for
the diagnosis of various brain diseases. The rest of this paper
is organized as follows. In Section II, we provide a concise
overview of the related work. In Section III, we elaborate on
the datasets and methods in detail. In Section IV, we present
the experimental setup and results. In Section V, we analyze
the key modules and parameters of our method. Finally, we
conclude this paper in Section VI.

[l. RELATED WORK

Constructing precise ROI-based brain function representa-
tion necessitates accurate brain parcellation. In this section,
we briefly review two primary categories of brain parcellation
methods employed in brain disease diagnosis: atlas-based
methods and data-driven methods.

A. Atlas-based Methods

The construction of FC based on atlas is the predominant
strategy in the field. Atlas-based methods for brain disease
analysis can be categorized into three main types: utilizing
a single atlas, combining multiple atlases, and constructing
individual-specific atlas.

1) Utilizing a Single Atlas: This form of atlas-based FC
analysis is reliant on a single atlas. For instance, Li et al. [9]
proposed an interpretable brain graph neural network for fMRI
analysis, utilizing the Desikan-Killiany atlas [17] to parcellate
the brain for the diagnosis of ASD. Qin et al. [24] employed
a graph convolutional network to characterize individuals
with major depressive disorder across multiple imaging sites,
which parceled the entire brain into 160 ROIs according
to Dosenbach’s atlas [25]. Huang et al. [10] proposed an
attention-diffusion-bilinear neural network for brain network
analysis, which adopted AAL atlas to parcellate the brain into
90 ROIs. Although different brain atlases can be employed
for diagnosing brain diseases, there is no standardized strategy
for selecting brain atlas and different brain atlases will lead to
inconsistent diagnosis.

2) Combining Multiple Atlases: This form of atlas-based
FC analysis is predicated on multiple atlases. For instance,
Yao et al. [12] proposed a mutual multi-scale triplet graph
convolutional network for the classification of brain disorders.
This approach employed four atlases to construct multi-scale
brain networks, namely AAL atlas, Craddock atlas [26],
Brainnetome atlas [27], and Bootstrap Analysis of Stable
Clusters atlas [28]. Cui et al. [29] combined two atlas-based
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FCs, namely personalized functional connectivity (PFC) atlas
and AAL atlas, to achieve superior performance compared to
single-atlas methods (only AAL or PFC atlas). Although the
fusion of multiple atlases has demonstrated improvements in
the diagnosis, challenges remain regarding atlas selection and
determining the optimal number of brain atlases.

3) Constructing Individual-Specific Atlas: This form of atlas-
based FC analysis relies on individual-specific atlas. Zhang et
al. [22] developed an individualized atlas by implementing a
three-step transformation-based method on the standard AAL
atlas for improving MCI diagnosis. Cui et al. [29] proposed
personalized FC based on individual-level brain atlas for MCI
identification. Wang et al. [30] utilized simple linear iterative
clustering to generate individualized brain atlases, which could
be used for personalized medicine. Although the construc-
tion of individual-specific atlas facilitates personalized brain
disease diagnosis, these methods necessitate an initial atlas
or involve several intricate iterations to derive the individual-
specific atlas.

B. Data-Driven Methods

In addition to the pre-defined brain atlases, several data-
driven methods for brain parcellation have been proposed to
aid in the diagnosis of brain diseases. For instance, Liu et
al. [31] proposed a landmark-based deep feature representation
approach for brain disease diagnosis. They identified land-
marks that had statistically significant differences between AD
and NC subjects. Subsequently, a pre-trained landmark detec-
tion model was employed to automatically detect landmarks.
Lian et al. [32] devised a fully convolutional network back-
bone to automatically localize discriminative brain regions for
dementia diagnosis. Abraham et al. [23] developed data-driven
atlases using four strategies for ASD diagnosis, including K-
Means clustering, Ward’s clustering, independent component
analysis (ICA), and multi-subject dictionary learning (MSDL).

These aforementioned methods have demonstrated that a
pre-defined brain atlas is not essential for the diagnosis of
brain diseases. However, most of these studies primarily
focus on structural images, with limited investigations into
rs-fMRI. Additionally, the data-driven brain atlas generation
and subsequent ROI-based analysis are often treated as two
separate steps, indicating the potential for improvement by
exploring joint optimization between these two stages.

[1l. MATERIALS AND METHODS

The architecture of the proposed method is depicted in
Fig. 1. We first randomly sample brain patches from fMRI,
avoiding the use of ROI parcellation of brain atlas. Then, we
design a representation framework for the sampled patches,
which contains the functional and structural information of the
brain regions comprehensively. Subsequently, we introduce an
adaptive-selection-assisted Transformer network to optimize
and integrate the aforementioned patch representation for brain
disease diagnosis. Although the idea of splitting an original
image into patches and attaching positional embeddings to
them is similar with Vision Transformer (ViT) [33], we design
new strategies in patch extraction, patch representation and

TABLE |
THE DEMOGRAPHIC STATISTICS OF DATASETS. M: MALE, F: FEMALE

Datasets Subgroup Number  Gender (M/F)  Age (years)
ASD 73 64/9 14.947.1
ABIDE NC 98 72126 157262
MCI 60 31729 71.8+7.3
ADNI NC 88 33/55 73.0+6.6
Depression | Melancholic 46 6/40 25.8+5.6
Subtype Atypical 42 8/34 23.5+4.3

patch integration to realize brain disease diagnosis without
relying on brain atlas.

A. Tasks and Data Preparation

We evaluate our method using three distinct tasks pertaining
to different brain image cohorts, including the Autism Brain
Imaging Data Exchange I (ABIDE) dataset, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, and the pri-
vate depression subtype dataset. The demographic statistics of
these datasets are provided in Table I.

For the ASD diagnosis task, we utilize the publicly available
ABIDE dataset. Specifically, we focus on the largest site
(NYU) in ABIDE to avoid multi-site confounding. We exclude
the subjects diagnosed with Asperger or PDD-NOS [34].
Consequently, our analysis involves rs-fMRI data from a total
of 171 subjects, including 73 ASDs and 98 NCs. We select
the data preprocessed through Data Processing Assistant for
Resting-State fMRI (DPARSF) toolbox [35]. The first 4 vol-
umes are dropped for signal equilibrium, followed by slice tim-
ing correction, motion correction, covariates removal, temporal
filtering, MNI space normalization, and spatial smoothing.

To diagnose MCI from normal, we employ the publicly
available ADNI dataset. We specifically choose data from the
six sites with the largest cohort sizes. We select a total of
333 rs-fMRI data from 148 distinct subjects, encompassing 60
MCIs and 88 NCs. It is worth noting that the ADNI dataset
consists of multi-site and multi-scan data. To make full use
of the data, we treat multiple scans as data augmentation, as
the training-test data split is at the subject level to prevent
data leakage. The rs-fMRI data follows a standardized pre-
processing pipeline using Analysis of Functional NeuroImages
(AFNI) toolbox [36], which discards the first 10 volumes for
signal equilibrium, followed by slice timing correction, motion
correction, covariates removal, temporal filtering, MNI space
normalization, and spatial smoothing.

For the depression subtype diagnosis, we utilize our private
dataset comprising 88 rs-fMRI data, consisting of 46 melan-
cholic and 42 atypical patients. The rs-fMRI data is collected
at Shanghai Mental Health Center affiliated to Shanghai Jiao
Tong University School of Medicine, where the Ethics Re-
view Board has reviewed and approved this research. Written
informed consent is obtained from all participants before their
enrollment in the study. The scanning parameters for the rs-
fMRI data are as follows: TR = 2000ms, TE = 30ms, field
of view (FOV) = 220mm x220mm, slice thickness = 3.0mm,
and voxel size = 3.0mm x3.0mm x 3.0mm. The rs-fMRI data is
preprocessed using the DPARSF toolbox. The first 10 volumes
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The architecture of the proposed randomizing brain function representation method for brain disease diagnosis. In the Sampling module,

we first randomly sample position coordinates in gray matter and obtain their corresponding N sampled patches, which are signified by average
BOLD signals and position coordinates. Then, we design a Function Representation framework for the sampled patches consisting of function
descriptions F'D and position descriptions PD. Finally, we propose an Adaptive-Selection-Assisted Transformer Network to integrate the

function representations of sampled patches for disease diagnosis.

are discarded, followed by slice timing correction, motion
correction, covariates removal, and temporal filtering.

B. Patch Sampling via Randomizing

In our study, we adopt a randomizing strategy by randomly
sampling patches. Specifically, we sample voxel locations
within the gray matter of each subject. The gray matter mask is
obtained by segmenting the structural image aligned with the
functional image. Subsequently, we extract the corresponding
gray matter voxels in the patch surrounding each sampled
location.

Depending on respective dataset configurations, we develop
two specific ways to sample patches.

1) Sampling Patches in Individual Space: Given a subject
fMRI in our private dataset, it is straightforward to employ ran-
domizing and randomly sample position coordinates (x,y, z)
from its own image space. And then we extract 3D patches
with a size of S x S x S surrounding these sampled position
coordinates. Notably, our method only utilizes gray matter
within the patches, as gray matter has been demonstrated to
be closely related to brain function. The position coordinates
pi = (x4,9i,2i) (@ = 1,2,...,N) are chosen to represent
their respective locations of sampled patches in the brain. N
denotes the number of patches sampled in each subject, which
is sufficiently large to ensure comprehensive coverage of the
entire gray matter.

2) Sampling Patches in Standard Space: Many publicly
available datasets (such as ABIDE and ADNI used in our
study) comprise preprocessed brain images that have already
been registered to the standard MNI space. We directly sample

the position coordinates p; Ly MNT

obtain the corresponding patches in the MNI space.

For both cases above, we can sample a set of patches to
represent each subject brain. As depicted in the Sampling
module in Fig. 1, the sampled patches are then signified
by average BOLD signals of rs-fMRI together with position
coordinates. It is important to note that the randomly sampled
patches differ across subjects since the sampling process
is independent for each subject. Consequently, the random
sampling strategy retains individual specificity.

MNI _ ( MNI 5\4NI) and

C. Function Representation

We present a novel brain representation, which combines
function descriptions and position descriptions of the sam-
pled patches, for the characterization of brain function. This
framework is proposed for the first time and aims to enhance
our understanding of brain function in the context of random
sampling.

1) Function Description: FC serves as a common indicator
of brain function [37], so we calculate FCs relating to the ran-
domly sampled patches to initialize their function descriptions.
To ensure comparability for the FCs of the sampled patches,
we introduce anchor patches as their common reference. That
is, we utilize equidistant grids to partition the entire gray mat-
ter to generate anchor masks as shown in Fig. 2. The anchors
can thus be generated straightforwardly and consistently for all
subjects. Note that, similar to the sampled patch, each anchor
patch only considers gray matter voxels inside.

Specifically, we compute the average BOLD signals of
gray matter within each randomly sampled patch and each
anchor patch, resulting in the respective mean time series.
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Then, we employ Pearson correlation (denoted as Corr in
Fig. 1) to calculate the FC matrix FD = {f;;} (FD €
RN*H §=1,2..,N, j=1,2,...,H), where f;; represents
the correlation between the randomly sampled patch v; and
the anchor patch a;. The parameter N represents the number
of patches sampled in each subject, and H denotes the number
of anchor patches. As depicted in the Function Representation
module in Fig. 1, each row of the FC matrix represents
the initial function description of the corresponding randomly
sampled patch.

2) Position Description: In addition to the function descrip-
tion, we find it important to have an additional position
description for each patch. As our patches are randomly
sampled across different subjects, we can ensure the intra-
and inter-subject comparability of the patches with the help of
position descriptions.

Specifically, we obtain position descriptions of the sampled
patches via the standard MNI space. For the position coordi-
nates P = {p;} (P € RV*3 j=1,2,...,N) of the sampled
patches in the private dataset, we leverage the T1 image as an
intermediary to register the MNI template with the functional
image. This registration process enables the calculation of the
standard space coordinates for each voxel in the individual
space of the functional image. Consequently, we can obtain
the position description of the sampled patch:

PD = norm(PMNT) = norm(¢~1(P)), ()

where ¢! is the inverse deformation derived from the afore-
mentioned registration. For the position coordinates PMNT —
{pMNI} (PMNI ¢ RNX3" 4 = 1,2, ...,N) of the sampled
patches in the publicly available dataset, they are already in
the standard MNI space, eliminating the need for additional
registration procedures:

PD = norm(PMNT), )

Here norm is employed for normalizing coordinates to the
range [0, 1].

It is worth noting that the above process is very differ-
ent from registration-based ROI parcellation. The position
description lets each patch have a global awareness of its
position in the brain. And it establishes the basis to mutually
compare individual patches across different subjects. On the
contrary, if using an atlas to parcellate brain ROIs, one may
have to complete image registration precisely, especially at the
boundaries of the ROIs.

D. Adaptive-Selection-Assisted Transformer Network

We design a Transformer network to optimize and integrate
the function and position descriptions of all sampled patches.
It is powered by the adaptive selection strategy (c.f. Adaptive
Selection Module in Fig. 1), which aims to identify the most
discriminative regions for diagnosis [38].

1) Adaptive Selection Module: The adaptive selection mod-
ule serves a dual purpose. It optimizes the computational
efficiency of the Transformer by reducing input dimensions.
And it enables the interpretability of brain disease diagnosis.
Fig. 2 provides examples of the initially sampled patches and

Anchor Patches

Gray
Matter Mask

Initially
Sampled Patches

Adaptively
Selected Patches

Fig. 2. The gray matter mask, anchor patches, and examples of initially
sampled patches together with adaptively selected patches in a subject
on ABIDE dataset. The sampled patches may overlap due to random
sampling. Only the axial plane of the 3D patches is depicted.

the adaptively selected patches within a subject. Furthermore,
we can conduct statistical analysis on these adaptively selected
patches at the group level to identify specific brain regions that
are primarily associated with the brain disease.

The adaptive selection module involves a series of opera-
tions. As illustrated in Fig. 1, we first derive the importance
y of each sampled patch computed as:

y =FDq/|ql, 3)

where g is a learnable projection vector, F'D represents
the function description. Then, a rank(-) function ranks and
returns the indices idx of the largest Nr values in y:

ide = rank(y, Nr), 4)

where 7 represents the adaptive selection ratio (set to a pre-
defined percentage of 80% following Section V-D), and N
represents the number of patches sampled in each subject.
Next, the selected patches F' € RE*H and their corresponding
position descriptions P € R®*3 are retained based on the
indices idx:

F = FD(idz,:),

~ ' &)
P = PD(idx,:).

Subsequently, the function embedding F'E and the position
embedding PFE can be obtained:

y = sigmoid(y(idr)),
FE=F o (11%), (6)

PE = MLP(P),

where the symbol © denotes the Hadamard product, and 1y
represents a vector of size H with all components equal to 1.
The penultimate term in Eq. (6) makes the projection vector
q in Eq. (3) trainable through back-propagation. The M LP
stands for a projection layer to transform dimensions and
enhance model representation. Finally, the function embedding
FE and the corresponding position embedding PE of the
selected patches are fused via addition to obtain the represen-
tation F of patches:

E=FE + PE, 7)

where F is input to Transformer encoder.
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2) Implementation of Transformer Network: To integrate the
function and position embeddings of the sampled patches
in each brain, we employ Transformer to obtain a global
representation of brain function. The Transformer encoders
comprise multi-head self-attention (M SA) and multi-layer
perceptron (M LP) layers. Additionally, before and after them
there are layer-norm (L) and residual connection respec-
tively. The Transformer encoders receive fused function rep-
resentations FE of patches as input, encompassing both the
functional and structural information of the brain.

The self-attention (S A) mechanism is employed to learn the
relationships among features from the sampled patches:

EWg(EWgK)T
VD

where Wg € RAXD W € REXD Wy, € REXM are
learnable linear transformation matrices. M represents the
dimension of the output feature in a single attention head.
The numbers of D and M are set to 32 following [39].
Furthermore, M .S A can be obtained by averaging or concate-
nating the outputs of multiple S As. In our approach, the model
concatenates two-head SAs as:

SA = softmax( JEWYy, 3)

MSA = concat(SA1,SA2)Whrsa. 9)

Warsa € R2M %0 is a learnable linear transformation matrix.
Our model stacks three Transformer encoders to derive the
global function representation, which is fed into an M LP
Head for disease diagnosis.

IV. EXPERIMENTS AND RESULTS
A. Experimental Settings

The proposed model is implemented with PyTorch, trained
on a single GPU (NVIDIA GeForce RTX 2080 SUPER with
8GB memory). We adopt a 5-fold cross-validation strategy to
assess the model’s performance. For classification tasks, we
utilize the cross-entropy loss function. The Adam optimizer is
employed during training. The model is trained for 100 epochs
with a learning rate of 0.001. The classification performance is
evaluated using four metrics, including accuracy (ACC), sen-
sitivity (SEN), specificity (SPE), and area under the receiver
operating characteristic curve (AUC).

B. Classification Results on Different Datasets

To assess the effectiveness of our proposed method, we
compare our method with the following approaches in the
diagnosis tasks of ASD, MCI, and depression subtypes. Sup-
port Vector Machine (SVM) is a traditional machine learning
method widely employed for disease classification. Brain-
NetCNN [40] is a convolutional neural network specifically
designed for brain network analysis. Graph Attention Network
(GAT) [41] excels at leveraging topological information from
brain functional networks to diagnose brain diseases. Graph
Convolutional Network (GCN) [24] aims at identifying in-
dividuals with major depressive disorder. BrainGNN [9] is
an interpretable brain graph neural network to enable ASD

diagnosis. MVS-GCN [42] is a prior brain structure learning-
guided multi-view graph convolution network for ASD di-
agnosis. KD-Transformer [39] is a diffusion kernel attention
network based on Transformer to diagnose MCI.

1) Classification Results on ABIDE: Given the diagnostic
performance on the ABIDE dataset, as presented in Table II,
we can draw the following conclusions. Firstly, deep learn-
ing methods consistently outperform traditional approaches.
SVM exhibits inferior diagnostic performance compared to
all other methods. This discrepancy arises from the capability
of deep learning models to extract discriminative information
in an end-to-end fashion, thereby enhancing the diagnosis of
brain diseases. Secondly, the models specifically designed for
brain disease diagnosis demonstrate superior diagnostic perfor-
mance. Notably, BrainGNN, MVS-GCN, and KD-Transformer
achieve higher classification accuracy than general GAT. This
observation highlights the importance of appropriately design-
ing models to effectively capture the complexity of brain
function for accurate diagnosis. Finally, our proposed method
achieves the most favorable performance, e.g., with the highest
ACC of 0.801 and the highest AUC of 0.783, These results
substantiate the effectiveness of sampling fMRI patches for
constructing brain function representation without relying on
a brain atlas for ROI parcellation.

2) Classification Results on ADNI: Table II also presents
the classification performance on the ADNI dataset. Similar
conclusions can be drawn from the results. Notably, our
method demonstrates superior performance compared to the
other competing methods, e.g., achieving the highest ACC of
0.778 and the highest AUC of 0.753. Furthermore, it is worth
noting that the ADNI dataset comprises data collected from
multiple sites. The observed results further demonstrate the
compatibility of our method with multi-site data, showcasing
its improved performance in such scenarios.

3) Classification Results on Depression Subtype: We further
verify our method on the challenging task of diagnosing
depression subtypes. Subtype diagnosis of depression aims
to distinguish more homogeneous groups within depression
to facilitate optimized treatment, which is a more difficult
classification task [43]. The classification results on the depres-
sion subtype dataset are summarized in Table II. Our method
achieves the highest ACC of 0.762. This indicates the ability
of our proposed method to effectively capture comprehensive
brain information, thereby boosting the diagnosis of brain
diseases.

Although our method does not achieve the highest value in
sensitivity on the ABIDE and ADNI datasets, it achieves a
better balance in sensitivity and specificity. It may be because
that GAT and MVS-GCN pay too much attention to certain
sub-populations, and dwarf the overall classification perfor-
mance. In addition, our method obtains a suboptimal AUC
value for depression subtype diagnosis. However, the margin
is very close and our method tends to have better stability (i.e.,
smaller standard deviation). Overall, the above results prove
the effectiveness and generalizability of our proposed method.
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TABLE Il
COMPARISON WITH DIFFERENT METHODS ON ABIDE, ADNI, AND DEPRESSION SUBTYPE DATASETS (MEANSTD)
Metric - ABIDE -
SVM BrainNetCNN GAT GCN BrainGNN MVS-GCN KD-Transformer Ours
ACC 0.649+0.056 0.696+0.039 0.661+0.041  0.720£0.063  0.719+£0.030  0.726+0.083 0.748+0.041 0.801+0.039
AUC 0.663+0.097 0.654+0.072 0.640+0.073  0.705+0.078  0.663£0.048  0.695+0.099 0.684+0.071 0.783+0.076
SEN 0.838+0.152 0.828+0.121 0.817+£0.068  0.848+0.104  0.784+0.108  0.888+0.074 0.847+0.070 0.797+0.090
SPE 0.619+0.045 0.676+0.065 0.636+0.046  0.700£0.075  0.706+£0.032  0.695+0.099 0.732+0.051 0.804+0.051
. ADNI
Metric SVM BrainNetCNN GAT GCN BranGNN  MVS-GCN __ KD-Transformer Ours
ACC 0.622+0.042 0.713+0.051 0.707+£0.066  0.693£0.105  0.723+£0.106  0.743+0.069 0.750+0.061 0.778+0.057
AUC 0.661+0.105 0.682+0.050 0.686+0.064  0.662+0.131  0.699+0.119  0.715+0.084 0.738+0.095 0.753+0.060
SEN 0.721£0.099 0.799+0.125 0.850+0.050  0.799+0.116  0.800+£0.100  0.836+0.073 0.743+0.151 0.811+0.080
SPE 0.635+0.043 0.654+0.050 0.689+0.043  0.646£0.065  0.694+0.072  0.715+0.084 0.721+0.055 0.742+0.049
Metric Depression Subtype
SVM BrainNetCNN GAT GCN BrainGNN MVS-GCN KD-Transformer Ours
ACC 0.567+0.054 0.681+0.059 0.714+£0.046  0.717£0.094  0.738+0.034  0.738+0.093 0.741+0.058 0.762+0.052
AUC 0.486+0.055 0.668+0.094 0.693+0.071  0.669£0.129  0.683+0.098  0.669+0.117 0.709+0.089 0.701+0.050
SEN 0.517+0.148 0.631+0.268 0.708+£0.167  0.647+0.254  0.636+0.163  0.580+0.306 0.689+0.184 0.761+0.107
SPE 0.564+0.054 0.675+0.065 0.714+£0.049  0.717£0.095  0.724+£0.041  0.669+0.117 0.740+0.051 0.762+0.054
TABLE Il TABLE IV
COMPARISON WITH DIFFERENT PARCELLATIONS ON ABIDE DATASET THE INDICES AND NAMES OF THE MOST DISCRIMINATIVE REGIONS
(MEAN%STD) IDENTIFIED BY OUR METHOD ON ABIDE DATASET
Metric AAL Schaefer300 SLIC SCSC Ours Index ROI Name in AAL Index ROI Name in AAL
ACC [0.73120.037 0.73720.055 0.720+0.049 0.737+0.068 0.801x0.039 1 Precentral L 38 Hippocampus_R
AUC |0.711£0.075 0.741+0.095 0.687+0.078 0.718+0.104 0.7830.076 2 Precentral R 39 ParaHippocampal L
SEN [0.755+0.103 0.747+0.097 0.734+0.041 0.765+0.068 0.797+0.090 4 Frontal Sup_R 40 ParaHippocampal R
SPE [0.726+0.028 0.739+0.069 0.717+0.050 0.7320.070 0.804x0.051 7 Frontal Mid_L 41 Amygdala L
8 Frontal Mid_R 45 Cuneus_L
11 Frontal_Inf_Oper_L 48 Lingual R
16 Frontal_Inf_Orb_R 51 Occipital_Mid_L
C. Classification Results on Different Parcellations 17 Rolandic_Oper.L 56 Fusiform R
20 Supp-Motor_Area_R 57 Postcentral L
To demonstrate the effectiveness of our proposed random 23 Frontal_Sup_Medial L 65 Angular L
sampling strategy, we conduct a comparative analysis by 24 Frontal Sup Medial R 67 Precuneus._L
. . . 29 Insula_L 68 Precuneus_R
replacing our sampled patches with atlas-based and data-driven 30 InsulaR 73 Putamen.L
ROI parcellations. For easy comparison, the experiments here 31 Cingulum_Ant_L 74 Putamen_R
are on ASD diagnosis only. Firstly, we consider several widely 32 Cingulum_Ant.R 81 Temporal Sup_L
. . . 34 Cingulum_Mid_R 82 Temporal _Sup_R
used atlases. The AAL atlas is a population-average brain 35 Cingulum_Post L 84 Temporal_Pole_Sup R
atlas extensively utilized in neuroimage studies. Additionally, 37 Hippocampus_L 86 Temporal Mid_R

the frequently employed Schaefer atlases define functional
regions. For fairness, we select the Schaefer300 atlas which
consists of 300 ROIs, as the number closely matches the
sampled patches in our method. Secondly, we compare an
individualized brain atlas generated by simple linear iterative
clustering (SLIC) [30]. Finally, we chose a data-driven brain
atlas generated by spatially constrained spectral clustering
(SCSC) [26]. To ensure a fair comparison upon different par-
cellations only, we combine our proposed position description
and adaptive selection module into all experiments here.

The results are presented in Table III, where our method
demonstrates superior performance compared to using brain
atlases. This improvement can be attributed to the random
sampling strategy, which provides ample brain patches to rep-
resent the brain while preserving individual-specific diagnostic
information.

D. Interpretability Exploration

The aforementioned adaptive selection module can effec-
tively screen all sampled patches to identify the most discrim-
inative brain regions for disease diagnosis. These adaptively
selected regions hold promise as potential disease biomarkers.

Specifically, we extract the brain patches identified by the
adaptive selection module as detailed in Section III-D.1. Then,
we aggregate the selected brain patches across the entire brain
to generate a subject-specific heat map. Standardizing and
averaging the heat maps of correctly predicted subjects yields
the final set of regional biomarkers at the dataset level.

To interpret the identified biomarkers, we present the dis-
criminative regions recognized by our models under different
thresholds on the ABIDE dataset. As illustrated in Fig. 3,
we can draw the following conclusions. Firstly, our proposed
random sampling strategy effectively samples patches across
the entire brain, as indicated by the 'No Threshold’ setting.
As the threshold increases, the discriminative regions gradually
become more concentrated within the brain (Threshold = 1),
eventually highlighting key brain regions (Threshold = 2, 2.3).
Hence, we set the threshold at 2.3 to clearly visualize the most
distinctive regions, which can potentially serve as biomarkers
distinguishing ASD and control. To maintain consistency with
previous studies, we utilize the brain region naming convention
of the AAL atlas to establish connections with our detected
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Threshold = 2.3 ’
(a) Discriminative Regions Under
Different Thresholds

Threshold =2

(b) Discriminative Regions (Threshold = 2.3)

Fig. 3. Discriminative regions identified by our method on the ABIDE dataset: (a) under different thresholds, and (b) for threshold = 2.3.
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Fig. 4. ACC of ABIDE dataset with different randomly sampled patch
sizes and numbers under multiple runs. The ACC is the mean of five-fold
cross-validation for ten times.

TABLE V
ABLATION STUDY RESULTS OF POSITION DESCRIPTION (PD) AND
ADAPTIVE SELECTION (AS) MODULE ON ABIDE DATASET
(MEAN£STD). FD: FUNCTION DESCRIPTION

FD PD AS ACC AUC SEN SPE

v 0.643+0.040 0.588+0.074 0.806+0.039 0.616+0.038
v v 0.760+0.036 0.761+0.058 0.836+0.099 0.747+0.054
v v 10.655£0.040 0.608+0.046 0.745+0.053 0.641+0.047
v v v [0.801+0.039 0.783+0.076 0.797+0.090 0.804+0.051

biomarkers. A total of 36 regions are identified, with their
respective AAL indices and names summarized in Table IV.

The majority of our identified biomarkers are consistent
with previously reported ASD studies. Specifically, most of
the identified regions (Table IV, Index 4, 16, 23, 24, 31,
32, 35, 65, 81, 82, 86) are implicated in the default mode
network (DMN). The DMN is a crucial brain system involved
in processing information about the self and others, and it has
emerged as a key system associated with social dysfunction
in ASD [44]. Moreover, other identified regions have also
proven to be related to ASD. For instance, the insula has
been widely utilized in FC analyses for ASD diagnosis [45].
The putamen has been shown to play a fundamental role in
predicting ASD [46]. Previous studies have also reported brain
abnormalities in various regions among individuals with ASD,
such as the frontal lobe, temporal lobe, hippocampus, and
precuneus [47], [48].

V. DISCUSSION
A. Ablation Studies

To demonstrate the effectiveness of the position description
and adaptive selection module, we conduct ablation studies. As
presented in Table V, the results highlight the impact of these
components on the performance of our method. Specifically,
compared to the absence of position description, our method
achieves a significant improvement of 0.117 in terms of
ACC (Table V, Row 1-2). This enhancement highlights the
importance of position description in enabling the recognition
and comparability of sampled patches within the randomizing
framework, ultimately resulting in improved performance.
Furthermore, the introduction of the adaptive selection module
further enhances diagnostic performance, with an additional
ACC improvement of 0.041 (Table V, Row 2, Row 4).

B. Sampled Patch Size and Number

In the random sampling strategy, the size of the sampled
patch is a critical hyperparameter. We investigate the impact
of patch size on the results using five different scales: 5, 9,
13, 17, and 21. We conduct the five-fold cross-validation for
ten times by randomly dividing the dataset. As illustrated in
Fig. 4 and Table VI, we can draw the conclusion that the
larger sampled patches tend to yield improved results within
a specific range. This observation can be attributed to the
fact that larger brain patches exhibit a higher tolerance for
BOLD noise. However, when the patch size exceeds a certain
threshold, diagnostic performance will be compromised. This
suggests that excessive brain parcellation leads to increased
aliasing of brain function, which can be detrimental to disease
diagnosis. Consequently, we adopt a patch size of 9x9x9 in
our study.

Regarding random sampling, another critical hyperparame-
ter to consider is the number of sampled patches. We assess the
influence of the patch number on the results at: 32, 64, 128,
256, 512, 1024, and 1500. We conduct the five-fold cross-
validation for ten times by randomly dividing the dataset. As
illustrated in Fig. 4 and Table VI, we can draw the following
conclusions. Initially, as the number of patches increases from
a small value, the model performance improves. However,
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ACC oF ABIDE DATASET AND ITS 95% CONFIDENCE INTERVAL (Cl) FOR RANDOMLY SAMPLED PATCH SIZES AND NUMBERS UNDER FIVE-FOLD

TABLE VI

CROSS-VALIDATION FOR TEN TIMES

Patch Size
ACC (€D 5 9 3 17 71
32 0.637 (0.624, 0.650)  0.671 (0.656, 0.685)  0.694 (0.675, 0.712)  0.686 (0.672, 0.700)  0.696 (0.680, 0.712)
64 0.669 (0.653, 0.684)  0.671 (0.657, 0.686)  0.702 (0.688, 0.717)  0.719 (0.705, 0.732)  0.698 (0.684, 0.713)
128 0.677 (0.661, 0.692)  0.712 (0.695, 0.729)  0.728 (0.710, 0.747)  0.720 (0.706, 0.734)  0.714 (0.697, 0.730)

Patch Number 256 0.704 (0.685, 0.724)  0.729 (0.716, 0.742)  0.724 (0.706, 0.741) ~ 0.738 (0.721, 0.754)  0.698 (0.684, 0.711)
512 0.720 (0.703, 0.737)  0.732 (0.715, 0.748)  0.729 (0.713, 0.746)  0.726 (0.709, 0.742)  0.712 (0.699, 0.726)
1024 | 0.726 (0.708, 0.745)  0.733 (0.717, 0.749)  0.718 (0.700, 0.735) ~ 0.725 (0.707, 0.744)  0.714 (0.698, 0.730)
1500 | 0.729 (0.711, 0.747)  0.730 (0.714, 0.746)  0.725 (0.710, 0.740)  0.725 (0.708, 0.743)  0.719 (0.704, 0.734)
—8—ACC AUC —8—ACC —8=—AUC
0.78 0.85
0.76 S __
o 0.74 : g P A\
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54 68 94 112 156 229 341 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
Anchor Patch Number Adaptive Selection Ratio
Fig. 5. ACC and AUC of ABIDE dataset with different anchor patch  Fig. 6. ACC and AUC of ABIDE dataset with different adaptive selection
numbers. ratios.

once the number of patches surpasses a certain threshold, the
model’s performance tends to stabilize and reach saturation.
This observation can be attributed to the fact that when the
number of patches is small, there is insufficient information
for disease diagnosis, so increasing the number of patches
enhances the model’s performance accordingly. Nonetheless,
once the number of patches is sufficiently large to adequately
represent the brain, further increasing the number does not
yield significant improvements in model performance. Thus,
to strike a balance between efficiency and performance, we
choose 256 as the number of sampled patches in our study.

It is worth noting that the size and number of sampled
patches are not independent hyperparameters, but rather in-
terconnected. The experimental results depicted in Fig. 4
indirectly support this notion. For example, when the number
of sampled patches is insufficient (e.g., number = 32), the
performance improves as the size of the patches increases.
This can be attributed to the fact that a combination of a small
number of large-sized patches captures a substantial amount
of information necessary for effective disease diagnosis.

C. Anchor Patch Number

We conduct experimental investigations to assess the impact
of anchor patch granularity (i.e., the number of anchor patches
and their corresponding sizes) on brain disease diagnosis. The
experimental results are depicted in Fig. 5. As the number of
anchor patches increases, the diagnostic performance initially
improves significantly, followed by stabilization. Based on
these findings, we select a total of 112 anchor patches for
subsequent experiments. This choice is justified by the results
presented in Fig. 5, which confirm that this level of granularity
is sufficient to calculate the function representation of the

randomly sampled patches.

D. Adaptive Selection Ratio

We design an adaptive selection module to identify the most
salient patches for diagnosis among the sampled patches. This
module operates by adjusting the adaptive selection ratio 7.
To determine the optimal value for r, we conducted a series
of experiments within the range of [0, 1]. The results, as
presented in Fig. 6, reveal a distinct pattern. The classification
performance initially improves and then decreases as the adap-
tive selection ratio increases. Notably, the best performance is
achieved when r = 0.8. Extremely small values of r lead to
an insufficient number of patches for effective diagnosis, while
excessively large values allow redundant and noisy patches to
interfere with the diagnostic process. Consequently, we adopt
an adaptive selection ratio of » = 0.8 in our approach.

E. Limitations and Future Work

In our study, we have showcased the effectiveness of using
anchor patches to calculate function representation. However,
our current implementation employs a unified parcellation of
the gray matter as the anchor patch. To enhance flexibility
and adaptability, alternative approaches for defining the anchor
patch should be explored, such as a random sampling strategy.

In fact, our random sampling strategy offers additional po-
tential for data augmentation of brain functions by iteratively
sampling patches and constructing corresponding FCs within
the same subject, which will be our future work. Currently,
we simply add function embeddings and position embeddings
to combine them, and optimizing the way to effectively fuse
function and position representations will be the future work.
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VI. CONCLUSION

In this paper, we present a novel random sampling strategy
to generate brain function representation for neural disease
diagnosis. Our approach leverages random sampling to derive
brain patches, thereby circumventing the limitations associated
with atlas-based parcellation used for defining ROIs. Addition-
ally, we introduce a new framework for brain function rep-
resentation, which combines function description with refer-
ence to anchor patches and position description. Furthermore,
the adaptive selection module designed by us optimizes the
computational cost of the Transformer network and realizes
interpretability exploration. Our method has demonstrated
competitive diagnostic performance across three distinct brain
diseases, showcasing its efficacy and versatility in the study
of neural disorders.
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